skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Drake, Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Exposure notification applications are developed to increase the scale and speed of disease contact tracing. Indeed, by taking advantage of Bluetooth technology, they track the infected population’s mobility and then inform close contacts to get tested. In this paper, we ask whether these applications can extend from reactive to preemptive risk management tools? To this end, we propose a new framework that utilizes graph neural networks (GNN) and real-world Foursquare mobility data to predict high risk locations on an hourly basis. As a proof of concept, we then simulate a risk-informed Foursquare population of over 36,000 people in Austin TX after the peak of an outbreak. We find that even after 50% of the population has been infected with COVID-19, they can still maintain their mobility, while reducing the new infections by 13%. Consequently, these results are a first step towards achieving what we call Quarantine in Motion. 
    more » « less
  2. Rappoport, Nadav (Ed.)
    Child birth via Cesarean section accounts for approximately 32% of all births each year in the United States. A variety of risk factors and complications can lead caregivers and patients to plan for a Cesarean delivery in advance before onset of labor. However, a non-trivial subset of Cesarean sections (∼25%) are unplanned and occur after an initial trial of labor is attempted. Unfortunately, patients who deliver via unplanned Cesarean sections have increased maternal morbidity and mortality rates and higher rates of neonatal intensive care admissions. In an effort to develop models aimed at improving health outcomes in labor and delivery, this work seeks to explore the use of national vital statistics data to quantify the likelihood of an unplanned Cesarean section based on 22 maternal characteristics. Machine learning techniques are used to ascertain influential features, train and evaluate models, and assess accuracy against available test data. Based on cross-validation results from a large training cohort ( n = 6,530,467 births), the gradient-boosted tree algorithm was identified as the best performer and was evaluated on a large test cohort ( n = 10,613,877 births) for two prediction scenarios. Area under the receiver operating characteristic curves of 0.77 or higher and recall scores of 0.78 or higher were obtained and the resulting models are well calibrated. Combined with feature importance analysis to explain why certain maternal characteristics lead to a specific prediction in individual patients, the developed analysis pipeline provides additional quantitative information to aid in the decision process on whether to plan for a Cesarean section in advance, a substantially safer option among women at a high risk of unplanned Cesarean delivery during labor. 
    more » « less
  3. With the recent advances in human sensing, the push to integrate human mobility tracking with epidemic modeling highlights the lack of groundwork at the mesoscale (e.g., city-level) for both contact tracing and transmission dynamics. Although GPS data has been used to study city-level outbreaks in the past, existing approaches fail to capture the path of infection at the individual level. Consequently, in this paper, we extend epidemics prediction from estimating the size of an outbreak at the population level to estimating the individuals who may likely get infected within a finite period of time. To this end, we propose a network science based method to first build and then prune the dynamic contact networks for recurring interactions; these networks can serve as the backbone topology for mechanistic epidemics modeling. We test our method using Foursquare’s Points of Interest (POI) smart phone geolocation data from over 1.3 million devices to better approximate the COVID-19 infection curves for two major (yet very different) US cities, (i.e., Austin and New York City), while maintaining the granularity of individual transmissions and reducing model uncertainty. Our method provides a foundation for building a disease prediction framework at the mesoscale that can help both policy makers and individuals better understand their estimated state of health and help the pandemic mitigation efforts. 
    more » « less
  4. null (Ed.)
    Evidence suggests that signatures of health and disease, or digital biomarkers, exist within the heterogeneous, temporally-dense data gathered from smartphone sensors and wearable devices that can be leveraged for medical applications. Modern smartphones contain a collection of energy-efficient sensors capable of capturing the device’s movement, orientation, and location as well characteristics of its external environment (e.g. ambient temperature, sound, pressure). When paired with peripheral wearable devices like smart watches, smartphones can also facilitate the collection/aggregation of important vital signs like heart rate and oxygen saturation. Here we discuss our recent experiences with deploying an open-source, cloud-native framework to monitor and collect smartphone sensor data from a cohort of pregnant women over a period of one year. We highlight two open-source integrations into the pipeline we found particularly useful: 1) a dashboard–built with Grafana and backed by Graphite–to monitor and manage production server loads and data collection metrics across the study cohort and 2) a back-end storage solution with InfluxDB, a multi-tenant time series database and data exploration ecosystem, to support biomarker discovery efforts of a multidisciplinary research team. 
    more » « less
  5. null (Ed.)
    Containerized applications have exploded in popularity in recent years, due to their ease of deployment, reproducible nature, and speed of startup. Accordingly, container orchestration tools such as Kubernetes have emerged as resource providers and users alike try to organize and scale their work across clusters of systems. This paper documents some real-world experiences of building, operating, and using self-hosted Kubernetes Linux clusters. It aims at comparisons between Kubernetes and single-node container solutions and traditional multi-user, batch queue Linux clusters. The authors of this paper have background experience first running traditional HPC Linux clusters and queuing systems like Slurm, and later virtual machines using technologies such as Openstack. Much of the experience and perspective below is informed by this perspective. We will also provide a use-case from a researcher who deployed on Kubernetes without being as opinionated about other potential choices. 
    more » « less
  6. Significance Proteins have shown promise as therapeutics and diagnostics, but their effectiveness is limited by our inability to spatially target their activity. To overcome this limitation, we developed a computationally guided method to design inactive proenzymes or zymogens, which are activated through cleavage by a protease. Since proteases are differentially expressed in various tissues and disease states, including cancer, these proenzymes could be targeted to the desired microenvironment. We tested our method on the therapeutically relevant protein carboxypeptidase G2 (CPG2). We designed Pro-CPG2s that are inhibited by 80 to 98% and are partially to fully reactivatable following protease treatment. The developed methodology, with further refinements, could pave the way for routinely designing protease-activated protein-based therapeutics and diagnostics that act in a spatially controlled manner. 
    more » « less